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Abstract. A complete analysis of the polaron problem allows us to determine the correct 
boundary conditions to be applied to the paths for the evaluation of the density matrix at 
the endpoints of the temperature range I /  kTe(0 ,  p ) .  Thus the trace is properly defined 
when calculating the partition function for a dynamical system of a particle interacting 
with a boson field and the role of spatial translational invariance, when present, is elucidated. 

1. Introduction 

One of the first thorough applications of the path integral method to physical systems 
has been the polaron problem. Since the original paper by Feynman [ l ,  21 all the 
approximations and the different routes for overcoming the various difficulties have 
met a common problem: how must the endpoint values be chosen for the particle 
trajectories on which the path integral is performed? 

In the case of zero temperature ( P  +a) however, the choice of the endpoints r ( 0 )  
and r( P )  is purely a matter of convenience. This is because the energy of the ground 
state Eo for the interacting system is obtained by looking at the exponential decay rate 
of the density matrix p̂  as a function of p. Thus, projection of the density matrix on 
the ground state of the free oscillators does not influence this dependence and gives 
rise to a reduced density matrix poo(r, r ’ )  for the particle, which gives 

1 
lim - log poo( r, r ’ )  = -Eo 
P+= P 

Here the limit of (1) is independent of the choice of any r, r’ .  The usual procedure 
in Feynman’s approach to the polaron problem is thus justified: the variables r and 
r’ appearing in (1 )  are taken equal to zero and in the course of the calculation any 
contribution, which arises from terms that are very small when P is large, is disregarded. 

On the contrary, in the case of finite temperature, correct handling of the boundary 
conditions is crucial. The full partition function Z is now requested. This implies that 
the traces have to be performed on the full density matrix. Our starting point is the 
expression for Z as the trace of a path integral on closed trajectories for the particle, 
after the oscillator’s coordinates have been integrated out exactly: 
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is the partition function of the N free longitudinal optical phonons of frequency w 
(units h = m = w = 1 will be chosen in the following) and S is the reduced action as 
a functional of the particle trajectory: 

written in terms of the phonon propagator in imaginary time: 

cosh W ( U  - / 3 / 2 )  
Du(u)= - exp(-mu). 

sinh( p w / 2 )  pdX 
(4) 

This kernel reduces to Feynman’s in the limit @+CO.  Equation (3) accounts for a 
retarded interaction of the particle with itself at previous times, so that S can be viewed 
as somehow describing a two-particle system. The symbol Tr stands here for taking 
the extremum of the loop r ( 0 )  = r( p )  = r ,  as a variable and  integrating on it. As ( 2 )  
factorises in equal contributions arising from the three Cartesian coordinates, from 
now on we consider only one  of them, x(  t ) .  

In the usual variational theory the particle trajectory x ’ ( t )  is needed, which 
minimises the approximate quadratic action inclusive of a driving term f: 

S , = - ~ ~ ~ ~ i 2 d f - f ~ o ~ d r d s D , , i ~ r - s ~ ) ( x , - x ~ ) ’ +  (5) 

where 

ft = i k , [ 6 ( t - ~ ) - S ( t - u ) ] .  (5’) 

The approximate quadratic action So is obtained from S, by putting f = O .  It is 
questionable whether the equation of motion for x( t )  can be solved in closed form 
with arbitrary periodic boundary conditions so that the evaluation of the trace appears 
as an  ill-defined task. Nevertheless we will show that the crucial requirement of 
translational invariance for actions S and  So is a sufficient condition for achieving the 
full result. Moreover it is possible to give a non-ambiguous procedure in the case 
when the translational invariance is not fulfilled, decoupling the variables of a n  
equivalent system. In this way the problem of the influence of the boundary conditions 
on x ( t )  is settled once and  for all. 

It is customary in the literature to introduce a model Lagrangian for a two-particle 
system from the very outset, claiming that it might help in avoiding mathematical 
difficulties connected with the asymptotic behaviour and  the boundary conditions 
[ 2 , 3 ] .  The polaron at  finite temperature has been discussed by Osaka [4] long ago 
assuming the normal coordinates of this model as independent variables and taking 
the traces with respect to both of them. Actually, previous path integral results for 
the harmonic oscillator [SI obtained from the first-order Lagrangian equation of motion 
needed auxiliary degrees of freedom to be introduced, on which integration is eventually 
performed. 

In the polaron problem the equation of motion to be solved for x ( t )  is integro- 
differential and can be solved by introducing an auxiliary variable y (  t ) ,  so that x( t )  
and y ( t )  satisfy a system of second-order ordinary differential equations. The boundary 
conditions for x ( t )  are given by 

x(0) = x( p )  = x, . ( 6 )  



Finite-temperature polaron problem 40 1 

On the contrary those to be imposed on y ( t )  are not self-evident. In analogy to (6) 
the following conditions are assumed: 

Y ( 0 )  = Y (  P )  = Y ,  ( 7 )  

and an extra integration on the variable y ,  is needed. 
The model Lagrangian is invoked to make this step legitimate but, to our knowledge, 

no further investigation has been done on the actual equivalence between the model 
dynamical system and the original equation of motion. On the contrary, with an 
appropriate choice of boundary conditions on y ( t ) ,  which follow directly from its 
definition, we can show that the equivalence is well stated. 

Besides, the translational invariance, if present, allows for drastic simplifications 
in the evaluation of the trace, so that one can get rid of the model altogether. In this 
way our discussion of the finite- and zero-temperature polaron problem is possible, 
which accounts for all approximations in the p --* 03 limit. 

We believe that, although it might appear a minor point as far as the polaron theory 
is concerned, it turns out to be very relevant when non-translationally invariant systems 
are considered. Similarly, some care has to be taken in this context, when holomorphic 
representation of Hamiltonians is used [ 6 ] ,  in evaluating time-ordered Green functions 
via a path integral method [7]. 

2. Polaron variational calculation 

To give an estimate of (2) in the case of the polaron problem the variational method 
based on the approximate quadratic action S is reduced to the evaluation of the 
following average value: 

(exp( [ophx' dt ) )  = Tr $ 9 ~  esf - Tr exp( S,[x:]) 

S ,  Tr $ 9 ~  eSn - Tr exp( So[x:]) * 

The expression of S, is given by ( 5 )  while So is obtained by dropping the driving force 
term. The last equality follows from the fact that the driven action S, is quadratic. 
Here x:(x:) is the solution of the Euler equation that stems from searching for the 
minimum of the action Sr(So): 

with periodic boundary conditions 

x(0) = x, x ( P ) = x , .  (9 ' )  

If xo( t )  is the solution of (9) with x, = 0, then the translational invariance of So ensures 
that 

(10) x'( t )  = xO( t )  + X I .  

That is, the minimising loop based at x, is obtained from the one based at the origin 
through a translation of amplitude x, . On the other hand 
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but, in turn, the true action S is also translationally invariant. Then 

lop f( t ) d t = 0 

so that the important result follows: 

Sf[x:]=Sf[x?]=f lop dtf( t )xO(r)  (13) 

i.e. the driven action is translationally invariant when evaluated along the loops that 
minimise it. It is worthwhile remarking that only two of the three conditions for the 
validity of Noether’s theorem [8] are fulfilled, as the integrand of S, is not itself 
translationally invariant, due to the presence of the driving termf( t)x( t ) .  Thus, strictly 
speaking, no constant of motion is associated with the group of translation defined by 
(10). It turns out, however, that the time average of the mass centre velocity is zero. 

Thanks to (13) which is valid also when f t  is taken to be zero, we are able to 
calculate immediately the traces that appear in (8), thus giving 

This equation is similar in form to Feynman’s equation (28) in [ l] ,  but we stress 
that it is true in full generality at finite temperature, while Feynman’s equation is 
obtained in the zero-temperature limit p +a. 

The problem is now reduced to the explicit calculation of x( t ) .  Following Feynman 
we define an auxiliary variable 

in terms of which the Euler equation (9) transforms into the system of coupled 
equations: 

L’= W2(y - x)  
X=(4C/ W)(x-y) - f ,  

with boundary conditions (9’) together with 

y ( O ) = y ( P ) .  (16’) 
Condition (16’) follows from the definition of y (  t )  at once. Essentially the method by 
Osaka? is to solve (16) with the conditions (9’) and (16‘) introducing a model Euclidean 
Lagrangian L(x, y )  that generates (16) and diagonalising it. Its eigenfrequencies are 
0 and V 2  = W2 + 4C/  W corresponding to the normal coordinates 7 and 6 respectively, 
which are 

7) = ( w’/ V2)(4Cy/ w3 + x )  

6 = ( w’/ V*)(Y - x) .  

The Lagrangian then separates as 

t Contrary to [4] our  whole exposition is in imaginary time. 
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Here 7 describes the centre of mass of the particles x, y subjected to the action of the 
driving force A ,  while the relative coordinate 6 describes an harmonic oscillator 
of mass M = 4CV2/ Ws and frequency V, driven by the force y, = -4CJ/ W3. The 
decoupled equations of motion are then 

ij = -( w’/ V’)A 

i‘= V2(+ (W2/ V*)A. 

It is apparent here that the property of invariance (13 )  is reflected on the variable 
7( t ) ,  which plays the role that x ’ ( t )  had in the original problem (9). We note that the 
transformation (17), when applied directly to system (16), leads to (19) straightfor- 
wardly with no need to resort to any model Lagrangian as we have done here. 

In Osaka’s paper the traces appearing in (8) are integrations on the values of r ] ,  

and 6 , .  While the integration on 7, is automatically taken into account, the integration 
on 6, has to be performed. This implies that variables 7 and ( are on the same foot 
and assumes that the boundary conditions for the two are both periodic. Equation 
(16’) is thus forced to be split into 

y ( O ) = y ,  y ( P ) = y ,  (20) 

which determines the origin 6,  of the loop (( 2 )  that has to be integrated out. However, 
an arbitrary value of the endpoint y ,  could not be compatible with the definition of 
y ( t )  given by (15) ,  so that the equivalence of system (16) with the Euler equation (9) 
is not assured. 

On the other hand, inspection of (15) shows that the most appropriate condition 
to be added to (9’) and (16‘) is 

J ; ( O ) = j ( P ) .  (21) 

In fact, Dw can play the role of the Green function for the first of equations (16). 
Using the definition (4) we have [ 1 1 1  

(5- w2) D w ( , t  - S I )  = -2 ws(t - s) 

Then the Green lemma yields 

the right-hand side vanishes when (16’) and (21) are fulfilled because 

a W sinh W (  p / 2  -s) a 
a t  sinh Wp/2 - DwJ,=I J=  =; D w l r = p .  

Now the full equivalence of system (16) and the Euler equation (9) is achieved. Using 
boundary conditions of (97, (16’) and (21) the explicit form of 7, and 6, in terms of 
the initial value x, is 

( t  - U ) 6 (  t - U )  - ( f - 7) o( f - 7) - ( 7 -  U )  
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sinh V ( t - a ) 6 ( t - ( ~ )  sinh Vr +sinh V( p - t )  

sinh V p  5, = 51 

sinh Vt 
sinh V/3 

-sinh v( t - ~ ) 6 (  t - T)+- [sinh V( p - 7 )  - sinh V( p - U ) ] )  

where 

and the explicit form of fr of ( 5 ‘ )  has been used. 
Inverting the transformation (17) ,  condition 

y ( r )  itself 

ik, 
2 v  yo = yo = x + - ( D ( (T ) - D ( T ) ) . 

The loops y (  t )  are obtained one from another by 

Here 6 is the usual step function. 
(21) determines the initial value of 

the same translational group of (10). - .  

When /3 goes to infinity and x I  = 0 in (24), the R H S  vanishes and the boundary conditions 
for y (  t )  underlying Feynman’s original result appear?. Finally, equations (22) allow 
us to calculate directly S,[x:], yielding 

which is exactly Osaka’s result. 
A few comments are now in order. The expressions of 7 and 6 given by (22) with 

the aid of our extra condition (21)  guarantee the equivalence of system (16)  with the 
Euler integro-differential equation (9) when transformed back to x and y. 

The major consequence is that there is no need to introduce any model through a 
suitable Lagrangian. Besides, it is arduous to think of a physical model system which 
satisfies boundary conditions like those of (97, (16’) and (21) .  

While translational invariance helps in the evaluation of the traces in (8), as 
discussed, it is by no means invoked in determining the condition (21) .  On the other 
hand, the dependence of the endpoints of y (  t )  on x1 follows from (21) when transla- 
tional invariance is also lacking, although it will not necessarily be linear as in (24). 
The trace can then be performed unambiguously as an integration only on x , ,  as soon 
as the solution of the Euler equation for x (  1 )  is exhibited explicitly. 
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